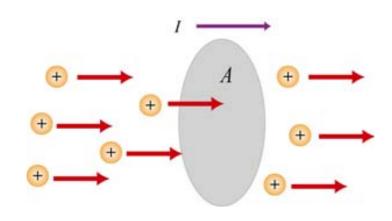
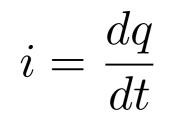
Corrente Elétrica

Definição de corrente elétrica

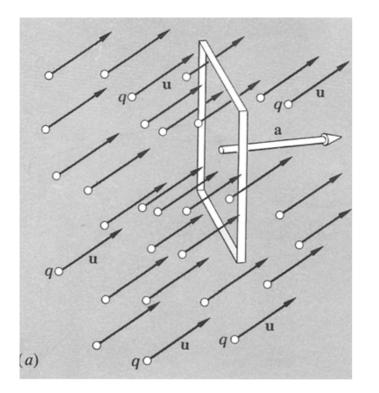


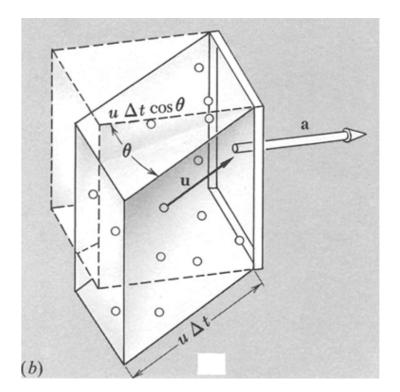


Carga elétrica que atravessa uma seção reta do fio condutor *I* por unidade de tempo.

Unidades: C/s = A (Ampère)

Definição de corrente elétrica



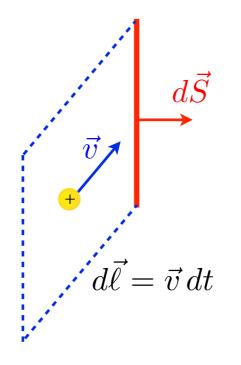


$$i = \frac{dq}{dt}$$

Carga elétrica que atravessa a seção reta A por unidade de tempo.

Fluxo e o vetor densidade de corrente elétrica

Considere que os portadores de carga se movimentam com velocidade média \vec{v}



As partículas que passam por dS em dt são, apenas, as que estão contidas no prisma oblíquo de base dS e aresta vdt.

O volume deste prisma é dado por $dV = dS v dt cos(\theta)$

Wednesday, October 30, 13

Densidade de corrente elétrica

Considere que a densidade de carga por unidade de volume é ρ

$$dq = \rho dV = \rho \, dS \, v dt \cos(\theta) = \rho \, d\vec{S} \cdot \vec{v} \, dt$$

Portanto,

$$i = \frac{dq}{dt} = \rho \vec{v} \cdot d\vec{S}$$

Definimos o vetor densidade de corrente elétrica $\vec{j} = \rho \vec{v}$

Consequentemente, a corrente elétrica que atravessa a área infinitesimal $d\vec{S}$

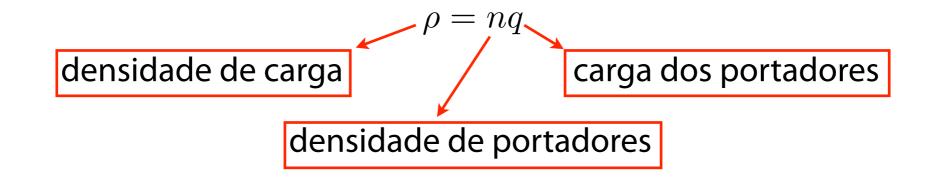
$$di = \vec{j} \cdot d\vec{S}$$

A corrente que flui através de uma área S é dada por

$$i = \int_S \vec{j} \cdot d\vec{S}$$

Vetor densidade de corrente

Chamando de n a densidade (número) de portadores por unidade de volume

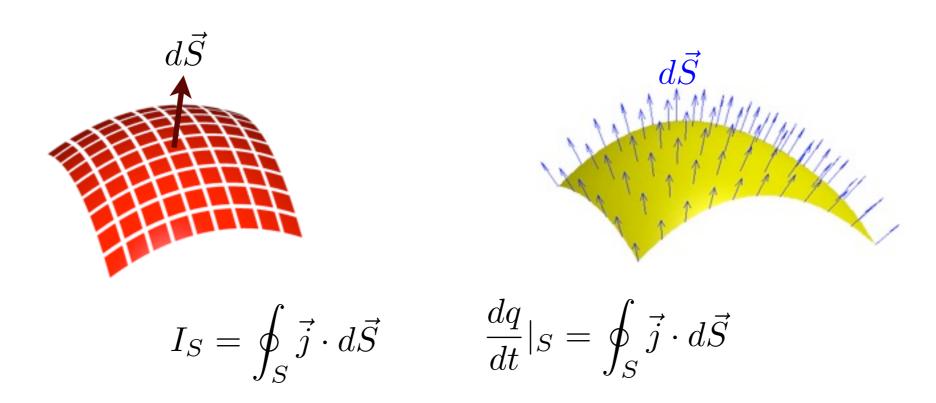


O vetor densidade de corrente elétrica pode ser reescrito como $\vec{j} = n q \vec{v}$

Generalização

$$\vec{j} = \sum_{i} n_i q_i \vec{v}_i$$

Conservação de carga



A carga total dentro de um volume V delimitado por uma superfície fechada S

$$q = \int_{V} \rho \, dV \quad \Rightarrow \quad \frac{dq}{dt} = \int_{V} \left(\frac{\partial \rho}{\partial t}\right) \, dV \qquad \text{carga que sai do volume V}$$
por unidade de tempo

 $\oint_{\widehat{J}} \vec{j} \cdot d\vec{S}$

A conservação de carga impõe que:

Variação da carga no volume V

 $\frac{dq}{dt}$

Equação de continuidade

Conservação de carga

(o que sai corresponde a redução dentro)

$$\oint_{S} \vec{j} \cdot d\vec{S} = -\int_{V} \left(\frac{\partial \rho}{\partial t}\right) dV$$

Utilizando o teorema de Gauss:
$$\oint_S \vec{F} \cdot d\vec{S} = \int_V \nabla \cdot \vec{F} \, dV$$

$$\nabla \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

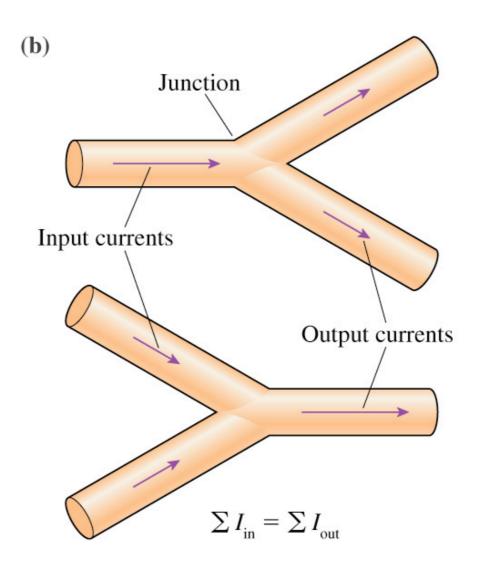
Equação de continuidade

$$abla \cdot \vec{j} = - rac{\partial
ho}{\partial t}$$
 Forma local

Wednesday, October 30, 13

Conservação de carga

Lei dos nós



Soma das correntes que entram é igual a soma das correntes que saem

Condutividade elétrica e a Lei de Ohm

A aplicação de um campo elétrico em um condutor causa o aparecimento de uma corrente elétrica.

Para campos elétricos relativamente pequenos

E

g

$$\vec{j} = \sigma \vec{E}$$

j é linearmente proporcional

ao campo aplicado E

Condutividade elétrica do material

$$dV = V_A - V_B = \vec{E} \cdot d\vec{\ell} = E \, d\ell$$

not an equipotential surface (and $E_{i \ id} \neq 0$)!

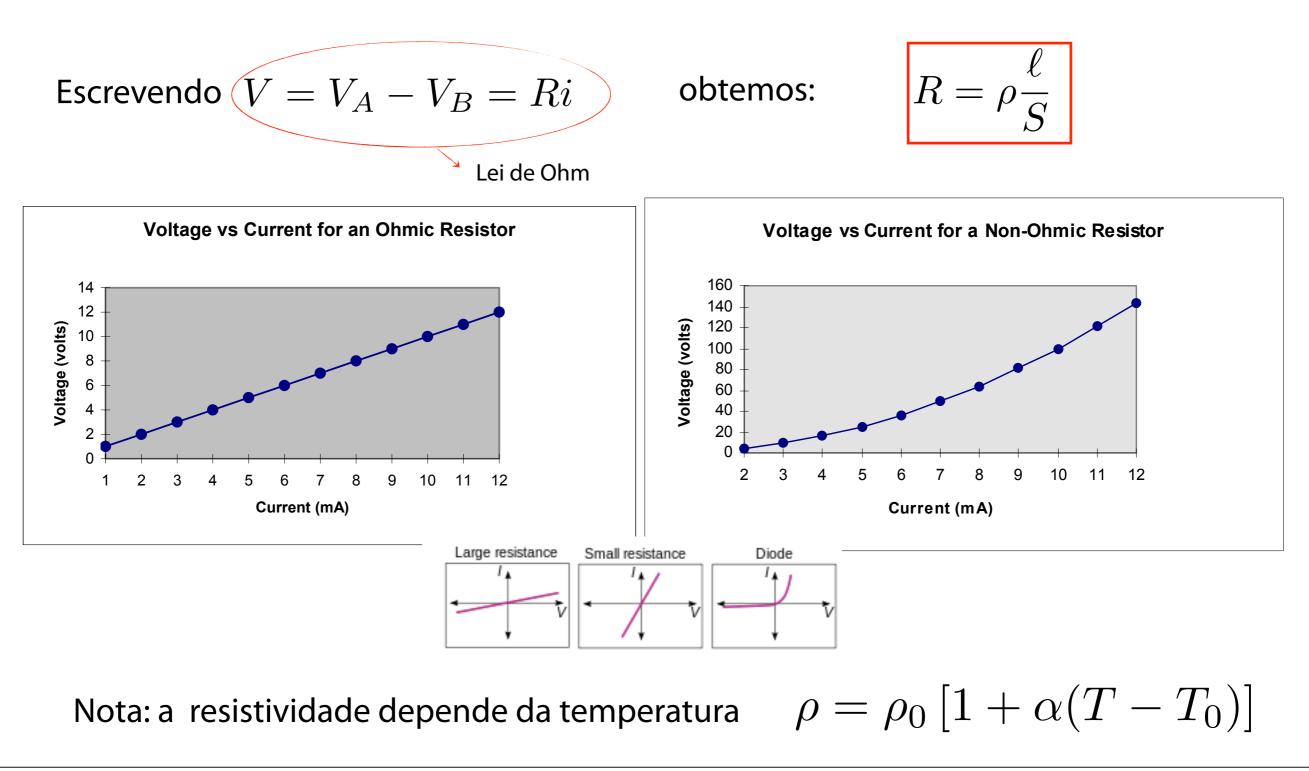
 ℓ^{p}

$$i_S = \oint_S \vec{j} \cdot d\vec{S} = jS = \sigma E S \implies E = \frac{i}{\sigma S} \implies dV = \frac{i}{\sigma S} d\ell$$

$$V = \frac{1}{\sigma} \frac{\ell}{S} \, i = \rho \frac{\ell}{S} \, i \quad \text{onde} \quad \rho = \frac{1}{\sigma}$$

Resistividade elétrica do material

Condutividade elétrica e a Lei de Ohm



Resistividade e condutividade elétrica de alguns materiais

Material	Resistivity ρ ($\Omega \cdot m$)	Conductivity σ $(\Omega \cdot m)^{-1}$	Temperature Coefficient α (°C) ⁻¹
Elements Silver	1.59×10 ⁻⁸	6.29×10 ⁷	0.0038
Copper	1.72×10^{-8}	5.81×10 ⁷	0.0039
Aluminum	2.82×10^{-8}	3.55×10 ⁷	0.0039
Tungsten	5.6×10^{-8}	1.8×10^{7}	0.0045
Iron	10.0×10^{-8}	1.0×10 ⁷	0.0050
Platinum	10.6×10^{-8}	1.0×10^{7}	0.0039
Alloys Brass	7×10^{-8}	1.4×10^{7}	0.002
Manganin	44×10^{-8}	0.23×10 ⁷	1.0×10^{-5}
Nichrome	100×10^{-8}	0.1×10^{7}	0.0004
Semiconductors Carbon (graphite)	3.5×10 ⁻⁵	2.9×10^4	-0.0005
Germanium (pure)	0.46	2.2	-0.048
Silicon (pure)	640	1.6×10^{-3}	-0.075
Insulators Glass	$10^{10} - 10^{14}$	$10^{-14} - 10^{-10}$	
Sulfur	10 ¹⁵	10 ⁻¹⁵	
Quartz (fused)	75×10 ¹⁶	1.33×10^{-18}	

Efeito Joule

Para transportar uma carga dq através de uma d.d.p. V é necessário dispender uma quantidade de energia dW = dq V

$$dq = idt \Rightarrow dW = idtV \Rightarrow \frac{dW}{dt} = iV$$

Potência = quantidade de energia dispendida por unidade de tempo

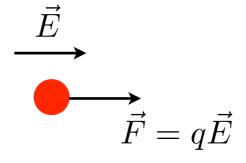
Como
$$V = Ri \Rightarrow P = Vi$$
 ou $P = Ri^2$ ou $P = V^2/R$

Unidades: Watt = 1V A

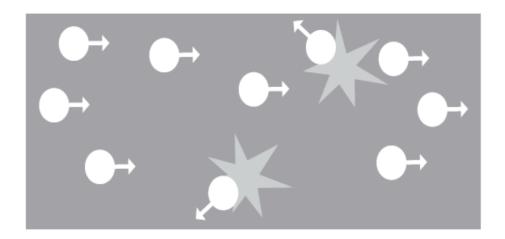
Se a corrente for constante dP = idV

Resistência elétrica: modelo

• Na presença de um campo elétrico \vec{E} os portadores de carga são acelerados por uma força $\vec{F} = q\vec{E}$.



• Resistência elétrica ocorre devido a espalhamentos eletrônicos com impurezas e/ou irregularidades no material; quanto mais são espalhados maior a resistência



Modelo

 Imediatamente depois de uma colisão, a direção e sentido da velocidade do portador é aleatória.

$$\left\langle \vec{v}_{j}^{\,dc}\right\rangle =0$$

• Imediatamente antes de uma colisão o portador terá adquirido uma quantidade de movimento $\Delta \vec{p} = q \vec{E} \Delta t$

$$\Rightarrow m\langle \vec{v} \rangle = \frac{m}{N} \sum_{j} \vec{v}_{j} = q\vec{E} \left(\frac{1}{N} \sum_{j} t_{j}\right)$$
velocidade média adquirida
pelos portadores em função
do campo aplicado
$$\mathcal{T} \text{ tempo médio entre}
colisões sucessivas}$$

Condutividade

Sendo assim,

$$\left\langle \vec{v} \right\rangle = \frac{q\tau}{m} \vec{E}$$

velocidade média é proporcional ao campo aplicado

Ι

х

No entanto,

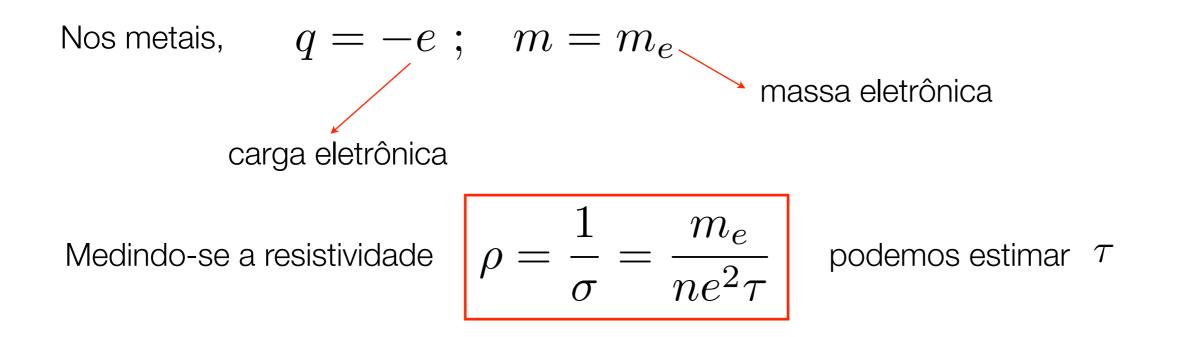
$$\vec{j} = nq \langle \vec{v} \rangle \quad \Rightarrow \quad \vec{j} = \left(\frac{nq^2\tau}{m}\right) \vec{E} \quad \vec{E}$$

Mas,

$$\vec{j} = \sigma \vec{E} \quad \Rightarrow \quad \sigma = \frac{nq^2\tau}{m}$$

condutividade é proporcional ao tempo médio entre colisões

Resistividade



e o livre caminho médio ℓ (espaço percorrido em média entre duas colisões)

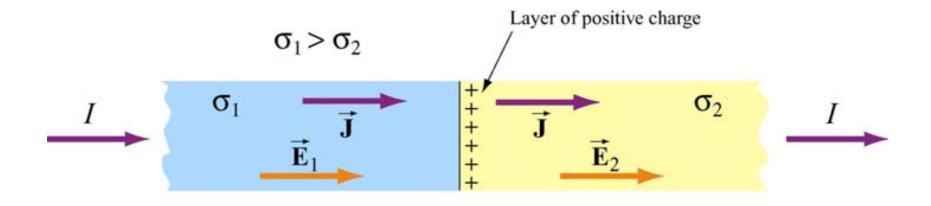
$$\ell = v_F \tau$$
 velocidade de Fermi

Cu (T~300K)
$$\ell pprox 10^2 a_0$$

espaçamento atômico

Carga na interface

Dois condutores com condutividades distintas e com mesma área de seção reta



Continuidade da corrente elétrica: $i_1 = i_2 = I \implies j_1 A_1 = j_2 A_2 \implies j_1 = j_2 = J$

$$J = \sigma E \Rightarrow \sigma_1 E_1 = \sigma_2 E_2 \Rightarrow E_2 = \frac{\sigma_1}{\sigma_2} E_1$$

Usando a Lei de Gauss: $(E_2 - E_1)A = \frac{q_{int}}{\epsilon_0} \Rightarrow q_{int} = \epsilon_0 E_1 A (\frac{\sigma_1}{\sigma_2} - 1)$

Como
$$J = \frac{I}{A} \Rightarrow E_1 = \frac{I}{A\sigma_1} \Rightarrow q_{int} = \epsilon_0 I(\frac{1}{\sigma_2} - \frac{1}{\sigma_1})$$

Wednesday, October 30, 13